Autonomous Leaves Graph - based Adaptive Mesh Refinement for Finite Volume discretizations of Boundary Layer problem around an airfoil
نویسنده
چکیده
In physics and fluid mechanics, the boundary layer is the fluid layer in the immediate vicinity of a bounding surface. It is important in many aerodynamic problems. This work presents a numerical simulation of the two-dimensional laminar boundary-layer problem considering a steady incompressible flow with no-slip condition on the surface. The adaptive mesh refinement is performed by Autonomous Leaves Graph in the Finite Volume solution. A modified Hilbert curve algorithm is used to connect and provide the ordering of the graph nodes. Initially, the numerical solution for the flat plate problem is compared to its analytical solution, namely Blasius solution. Next, simulations of the flux around a NACA airfoil shape are presented. Computer experiments show that an adaptive mesh refinement using Autonomous Leaves Graph with the modified Hilbert curve ordering is appropriate for an aerodynamic problem. Finally, results illustrate that the method provides a good trade-off between speed and accuracy.
منابع مشابه
Adaptive Mesh Refinement for Finite-volume Discretizations with Scalene Triangles
In this work, simulations with scalene triangle meshes represented by a recently proposed graphbased adaptive mesh refinement technique are described. Previously, simulations exclusively with isosceles right triangles were presented with this graph-based scheme. This data structure represents triangular meshes in finite-volume discretizations in order to solve second-order partial differential ...
متن کاملSimulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition
A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملBlock-structured Adaptive Mesh Refinement - Theory, Implementation and Application
Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations ...
متن کاملAn Adaptive Cartesian Detonation Solver for Fluid-Structure Interaction Simulation on Distributed Memory Computers
Time-accurate fluid-structure interaction simulations of strong shock and detonation waves impinging on deforming solid structures benefit significantly from the application of dynamic mesh adaptation in the fluid. A patch-based parallel fluid solver with adaptive mesh refinement in space and time tailored for this problem class is presented; special attention is given to the robustness of the ...
متن کامل